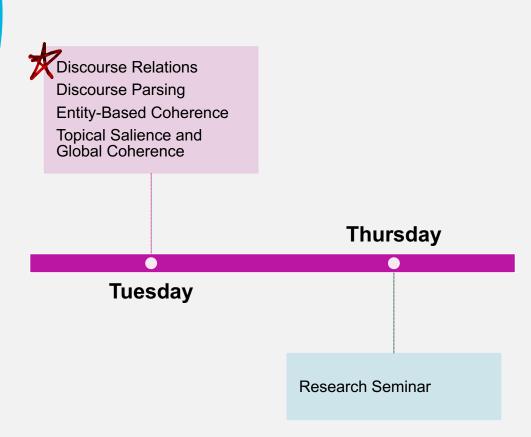

Discourse Coherence


Natalie Parde UIC CS 421

This Week's Topics

This Week's Topics

What is discourse coherence?

• The relationship (or lack thereof) between sentences in a **discourse**

I really like my class, CS 421. UIC is in Chicago. It's about natural language processing.

UIC is in Chicago, and I'm taking a class there called CS 421. I really like the class. It's about natural language processing.

What counts as a discourse?

- Discourses in NLP are structured, collocated groups of sentences
 - Chapter of a book
 - News article
 - Conversation
 - Twitter thread
 - Wikipedia page
- Discourses should be coherent, rather than random combinations of sentences

What makes a discourse coherent?

- Local and global factors
 - Relations between text units
 - Degree to which the next text unit is anticipated or can be inferred
 - Entity salience
 - Topical salience
 - Overall structure

I really like my class, CS 421. **UIC is in Chicago.** It's about natural language processing. UIC is in Chicago, and I'm taking a class there called CS 421. I really like the class . It's about natural language processing.

Why do we care whether a discourse is coherent?

- Measuring discourse coherence is important for measuring the quality of a given text
- Also helpful for:
 - Automated essay grading
 - Determining which sentences to include in automaticallygenerated summaries
 - Measuring mental or cognitive health

How do we measure discourse coherence?

- Some key techniques:
 - Identify coherence relations
 - Determine entity salience
 - Measure lexical cohesion
 - Identify argument structure

Coherence Relations

- Connections between spans of text in a discourse
- Two commonly-used models:
 - Rhetorical Structure Theory (RST)
 - Penn Discourse Treebank (PDTB)

Rhetorical Structure Theory

- Based on a set of 23 rhetorical relations that can hold between spans of text within a discourse
- Most relations are between two spans:
 - Nucleus
 - More central to the writer's purpose
 - Interpretable independently
 - Satellite
 - Less central to the writer's purpose
 - Only interpretable with respect to the nucleus

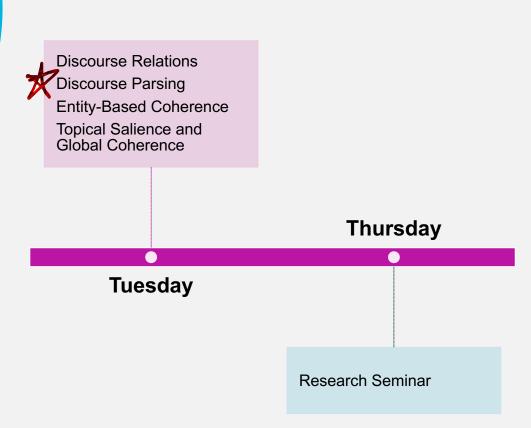
Rhetorical Structure Theory

- Relations are asymmetric
 - Represented graphically with arrows pointing from the satellite to the nucleus
- Relations are defined by a set of constraints on the nucleus and satellite
- Constraints are based on:
 - Goals and beliefs of the writer and reader
 - Effect on the reader

Her office door is cracked open.

Elaboration	Satellite gives further information about the content of the nucleus
Attribution	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along some important dimension
List	A series of nuclei is given, without contrast or explicit comparison
Reason	Satellite provides the reason for the action carried out in the puckers. Natalie told the class that there was
Evidence	Satellite provides information with the accept the information provided in the due the following Wednesday instead.

Elaboration	Satellite gives further information about the content of the nucleus
Attribution •	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along some important dimension
List	A series of nuclei is given, without contrast or explicit comparison
Reason	Satellite provides the reason for the action carried out in the puctors Natalie told the class that there was nothing due on Friday next week.
Evidence	Satellite provides information with the goal of convincing the reader to accept the information provided in the nucleus


Elaboration	Satellite gives further information about the content of the nucleus
Attribution	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along some important dimension
List	A series of nuclei is given, without contrast or explicit comparison
Reason	Satellite provides the reason for the action carried out in the public Outside was freezing, but inside was uncomfortably warm.
Evidence	Satellite provides information with the goal of convincing the reader to accept the information provided in the nucleus

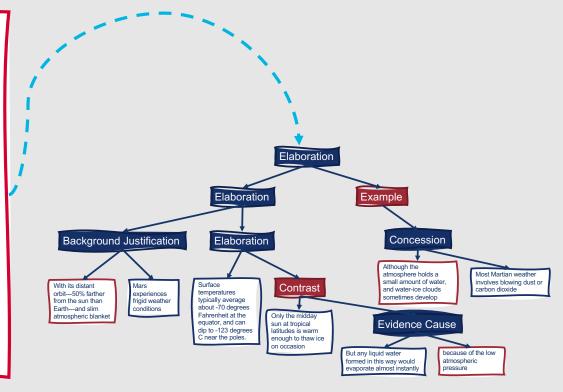
Elaboration	Satellite gives further information about the content of the nucleus
Attribution	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along some important dimension
List -	A series of nuclei is given, without contrast or explicit comparison
Reason	Satellite provides the reason for the action carried out in the public In the fall, Natalie taught CS 421; in the spring, Natalie taught CS 521; in the
Evidence	Satellite provides information with the accept the information provided in the nucleus

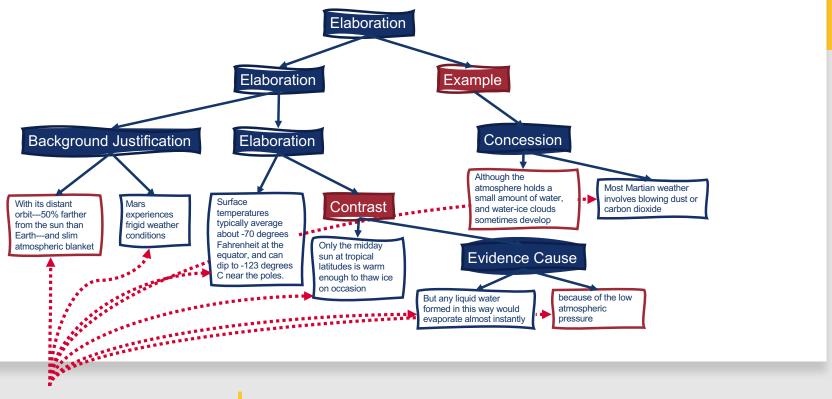
Elaboration	Satellite gives further information about the content of the nucleus
Attribution	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along Natalie spent a lot of time walking around the campus on Monday. She
List	A series of nuclei is given, without the had meetings in many different buildings.
Reason	Satellite provides the reason for the action carried out in the nucleus
Evidence	Satellite provides information with the goal of convincing the reader to accept the information provided in the nucleus

Elaboration	Satellite gives further information about the content of the nucleus
Attribution	Satellite gives the source of attribution for an instance of reported speech in the nucleus
Contrast	Two or more nuclei contrast along s Natalie must be here. Her office door is cracked open.
List	A series of nuclei is given, without contrast or explicit comparison
Reason	Satellite provides the reason for the action carried out in the nucleus
Evidence	Satellite provides information with the goal of convincing the reader to accept the information provided in the nucleus

This Week's Topics

RST relations can be hierarchically organized into discourse trees.


With its distant orbit—50% farther from the sun than Earth—and slim atmospheric blanket, Mars experiences frigid weather conditions. Surface temperatures typically average about -70 degrees Fahrenheit at the equator, and can dip to -123 degrees C near the poles.


Only the midday sun at tropical latitudes is warm enough to thaw ice on occasion, but any liquid water formed in this way would evaporate almost instantly because of the low atmospheric pressure. Although the atmosphere holds a small amount of water, and water-ice clouds sometimes develop, most Martian weather involves blowing dust or carbon dioxide.

Example Discourse Tree

With its distant orbit—50% farther from the sun than Earth—and slim atmospheric blanket, Mars experiences frigid weather conditions. Surface temperatures typically average about -70 degrees Fahrenheit at the equator, and can dip to -123 degrees C near the poles.

Only the midday sun at tropical latitudes is warm enough to thaw ice on occasion, but any liquid water formed in this way would evaporate almost instantly because of the low atmospheric pressure. Although the atmosphere holds a small amount of water, and water-ice clouds sometimes develop, most Martian weather involves blowing dust or carbon dioxide.

Elementary Discourse Units (EDUs)

- · Leaves in a discourse tree
 - · Also referred to as discourse segments
- Determining the boundaries of EDUs is important for extracting coherence relations

RST Corpora

O RST Discourse Treebank

- 385 English-language documents with full RST parses
- O https://catalog.ldc.upenn.edu/LDC2002T07

O RST Treebanks for Non-English Data:

- O CST-News (Brazilian Portuguese): <u>http://nilc.icmc.usp.br/CSTNews/login/?next=/CSTNews/</u>
- O Rhetalho and CorpusTCC (Brazilian Portuguese): https://sites.icmc.usp.br/taspardo/Projects.htm
- O Spanish RST DT (Spanish): http://corpus.iingen.unam.mx/rst/index_en.html
- Potsdam Commentary Corpus (German):
 http://angcl.ling.unipotsdam.de/resources/pcc.html
- O Basque RST DT (Basque): http://ixa2.si.ehu.es/diskurtsoa/en/

Natalie Parde - UIC CS 421

Penn Discourse Treebank

- Lexically-grounded model of coherence relations
 - Given a list of discourse connectives (e.g., because, although, when, since, or as a result) and an unlabeled document, annotators labeled:
 - Those connectives
 - The spans of text that they connected
 - In some cases, these connectives may be implicit

Arg1

Natalie spent most of her weekend catching up on work. **As a result**, she had a lighter workload on Monday.

Arg2

PDTB Semantic Hierarchy

- · Four main classes:
 - Temporal
 - Contingency
 - Comparison
 - Expansion
- Numerous subtypes of each

PDTB Annotations

- Only at the span-pair level!
- No hierarchical tree structure

PDTB Corpus

50k+ annotated relations

Built on top of the Wall Street Journal section of the Penn Treebank

https://catalog.ldc.upenn.edu/LDC2019T05

Natalie Parde - UIC CS 421

Given a specified discourse model (e.g., RST), how do we automatically assign discourse relations to text?

- O Discourse structure parsing: Given a sequence of text, automatically determine the coherence relations between spans within it
- Discourse structure parsing can be performed similarly to constituency parsing
 - O Break text into meaningful subunits
 - O Organize those subunits into a set of directed (and, depending on model type, hierarchical) relations

Natalie Parde - UIC CS 421

What does this look like for RST parsing?

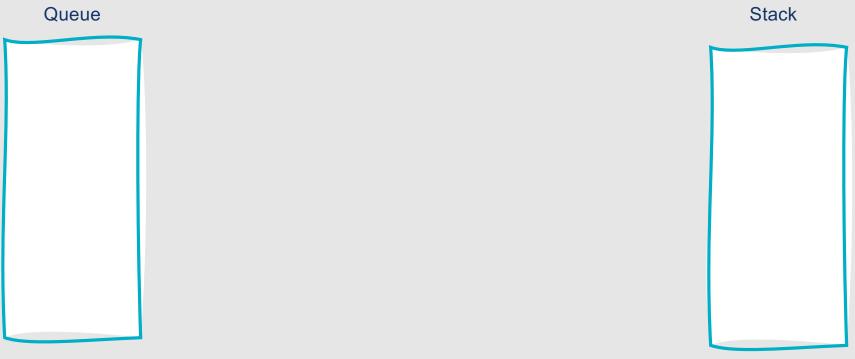
Step #1: EDU Segmentation

 Extract the start and end of each elementary discourse unit

Natalie said there was no class on Tuesday because she was traveling.

EDU Segmentation

- EDUs roughly correspond to clauses
- Early EDU segmentation approaches:
 - Run a syntactic parser
 - Post-process the output
- More modern EDU segmentation approaches:
 - Usually apply supervised neural sequence models


What does this look like for RST parsing?

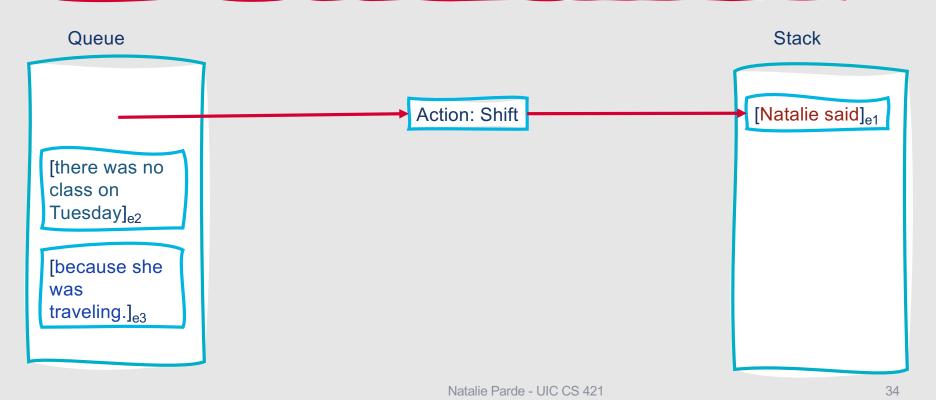
Step #1: EDU Segmentation

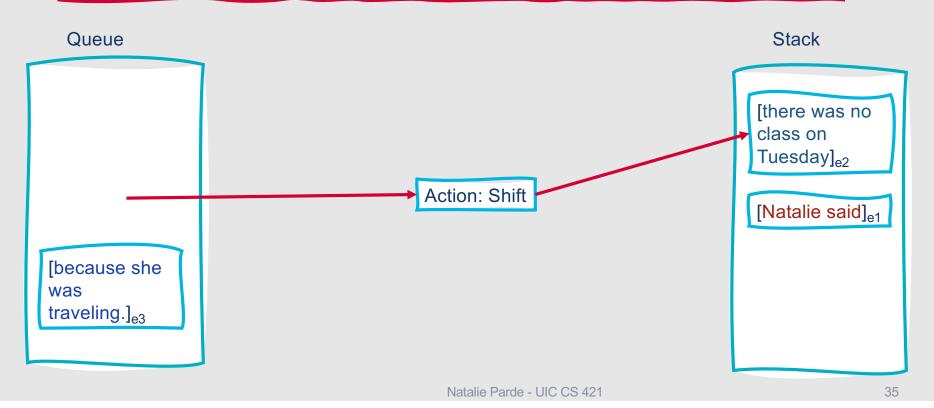
- Extract the start and end of each elementary discourse unit
- Step #2: Parsing Algorithm
 - Build representations for each EDU, and apply some method to connect them using RST relations

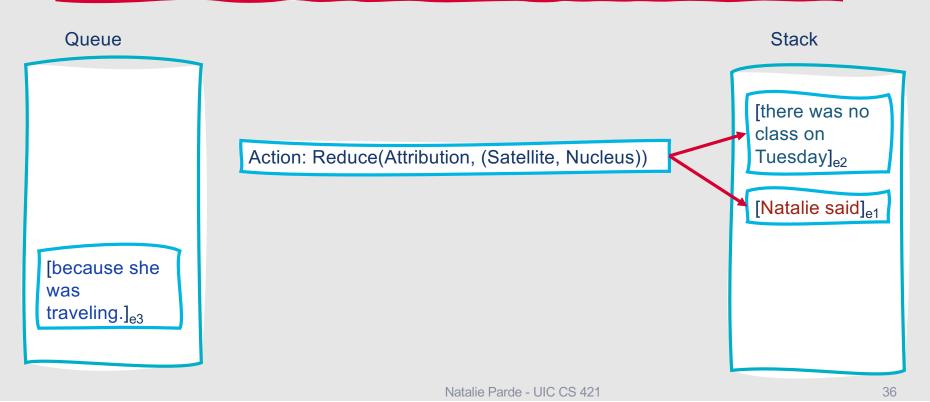
RST Parsing

- Generally based on syntactic parsing algorithms
- Common syntactic parsing approach that also works well for discourse parsing: Shiftreduce parser
 - Shift: Push an EDU from the queue onto the stack, creating a single-node subtree
 - Reduce: Merge the top two subtrees (either single-node or more complex) on the stack, assigning a coherence relation label and a nuclearity direction
 - Pop: Remove the final tree from the stack

[Natalie said]_{e1} [there was no class on Tuesday]_{e2} [because she was traveling.]_{e3}

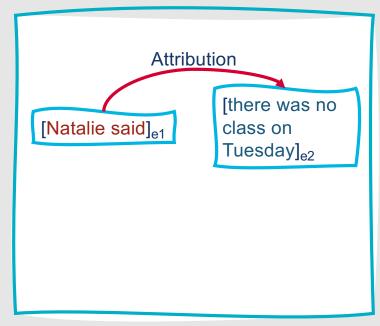

[Natalie said]_{e1}

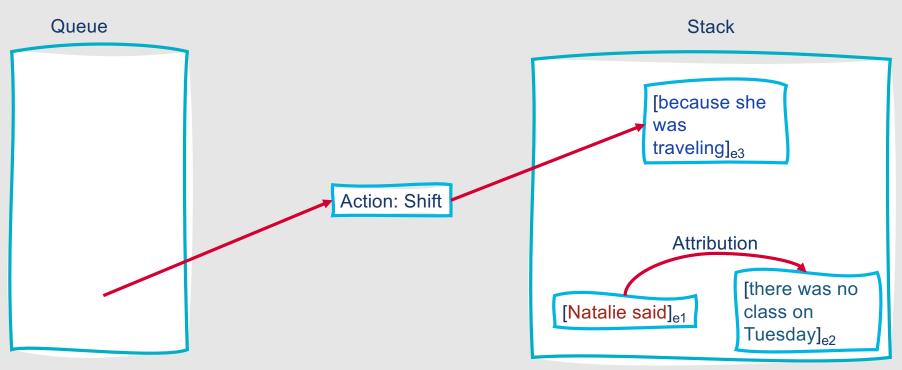

[there was no class on Tuesday]_{e2}


was

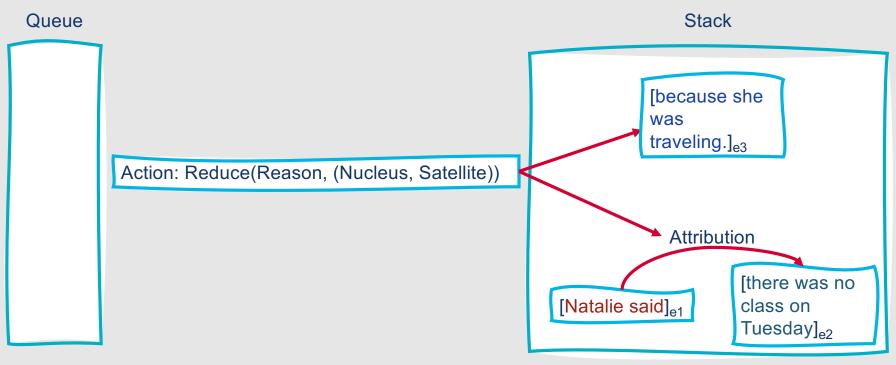
traveling.]_{e3}

Stack




[Natalie said]_{e1} [there was no class on Tuesday]_{e2} [because she was traveling.]_{e3}

Queue

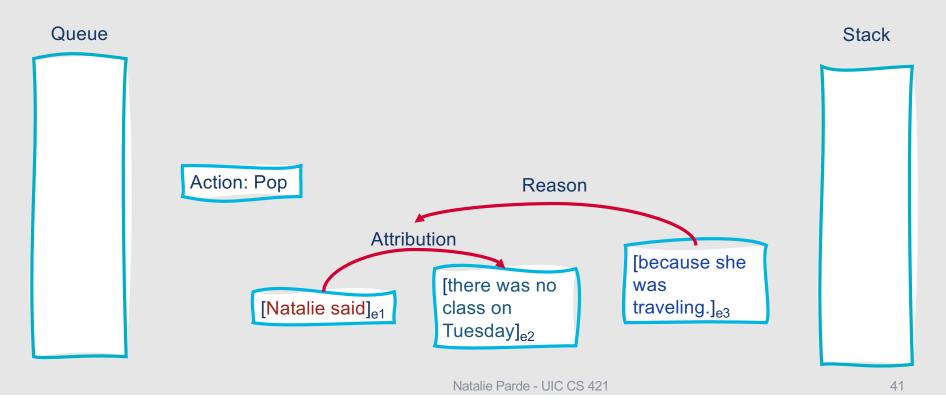

[because she was traveling.]_{e3} Stack

[Natalie said]_{e1} [there was no class on Tuesday]_{e2} [because she was traveling.]_{e3}

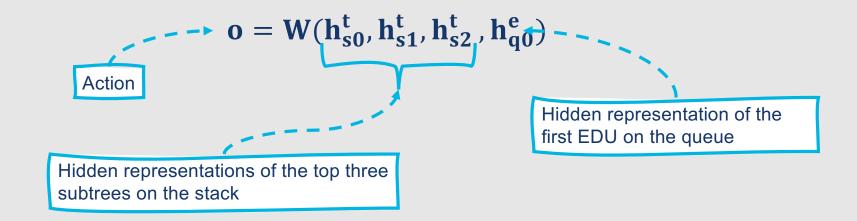
[Natalie said]_{e1} [there was no class on Tuesday]_{e2} [because she was traveling.]_{e3}

[Natalie said] $_{e1}$ [there was no class on Tuesday] $_{e2}$ [because she was traveling.] $_{e3}$

Reason

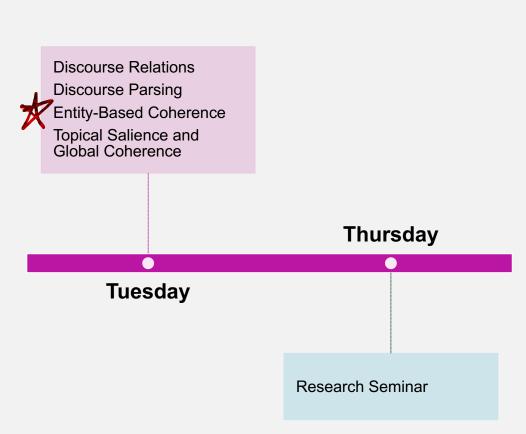

Attribution

[because she was no class on Tuesday]e2


Natalie Parde - UIC CS 421

Natalie Parde - UIC CS 421

[Natalie said]_{e1} [there was no class on Tuesday]_{e2} [because she was traveling.]_{e3}


Modern RST parsers generally select actions using neural networks.

O Shallow discourse parsing: Identifying relationships between text spans only, rather than full hierarchical discourse trees

How does
PDTB
discourse
parsing differ
from this?

This Week's Topics

Identifying discourse relations is one way to model discourse coherence....

- Another?
 - Determine entity salience

Entity-Based Coherence

- At each point in the discourse, some entity is salient
- A discourse remains coherent by continuing to discuss the salient entity
- Two key models for entity-based coherence:
 - Centering Theory
 - Entity Grid Model

Centering Theory

At any point in the discourse, one of the entities in the discourse model is salient (being "centered" on)

Discourses in which adjacent sentences **continue** to maintain the same salient entity are more coherent than those which **shift** back and forth between multiple entities

Natalie Parde - UIC CS 421 47

Centering Theory: Intuition

- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

Centering Theory: Intuition

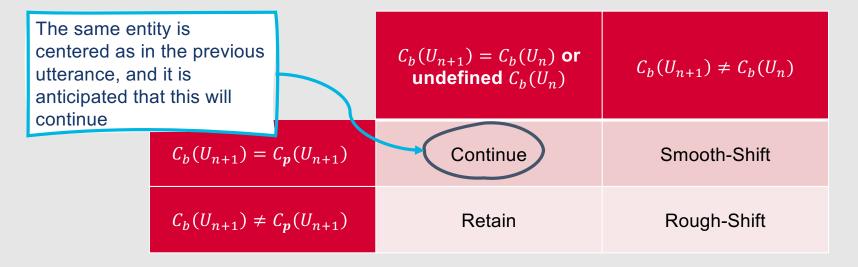
- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

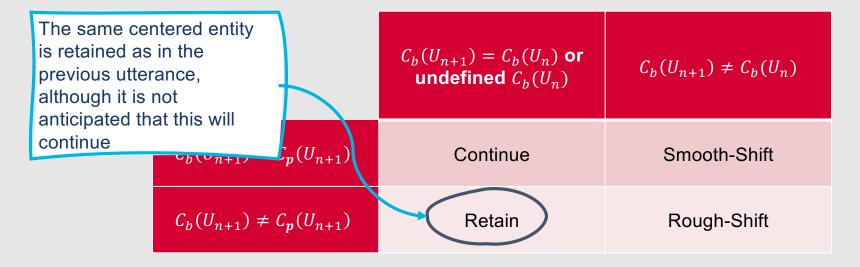
- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

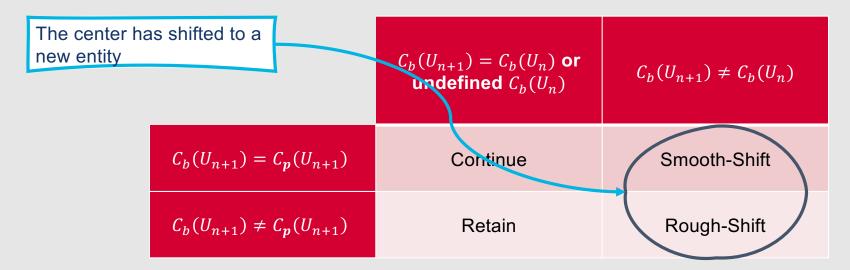
Same propositional content, difference entity saliences

Centering Theory: Intuition

- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.


- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.


Much more coherent!


How does Centering Theory realize this intuition?

- Maintain two representations for each utterance U_n
 - $C_f(U_n)$: Forward-looking centers of U_n
 - Set of potential future salient entities (potential $C_h(U_{n+1})$)
 - $C_b(U_n)$: Backward-looking center of U_n
 - The highest-ranked element of $\mathcal{C}_f(U_{n-1})$ that is realized in U_n
- Set of $C_f(U_n)$ are ranked based on a variety of factors (e.g., grammatical role)
- Highest-ranked $\mathcal{C}_f(U_n)$ is the preferred center \mathcal{C}_p

	$\mathcal{C}_b(U_{n+1}) = \mathcal{C}_b(U_n)$ or undefined $\mathcal{C}_b(U_n)$	$C_b(U_{n+1}) \neq C_b(U_n)$
$C_b(U_{n+1}) = C_p(U_{n+1})$	Continue	Smooth-Shift
$C_b(U_{n+1}) \neq C_{\boldsymbol{p}}(U_{n+1})$	Retain	Rough-Shift

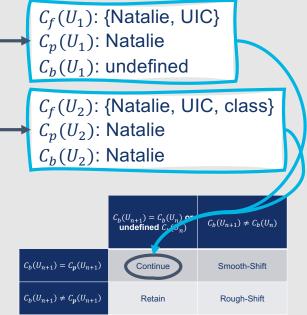
Based on these relationships, we can define two rules.

- Centered entities should be realized as pronouns when they are continued
- Transition states are ordered such that Continue > Retain > Smooth-Shift > Rough-Shift

	$C_b(U_{n+1}) = C_b(U_n)$ or undefined $C_b(U_n)$	$C_b(U_{n+1}) \neq C_b(U_n)$
$C_b(U_{n+1}) = C_p(U_{n+1})$	Continue	Smooth-Shift
$C_b(U_{n+1}) \neq C_p(U_{n+1})$	Retain	Rough-Shift

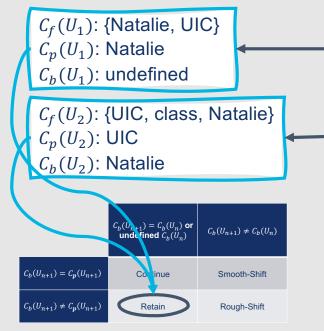
- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.


- Natalie was an associateprofessor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

 $C_f(U_1)$: {Natalie, UIC} $C_p(U_1)$: Natalie $C_b(U_1)$: undefined

 $C_f(U_2)$: {Natalie, UIC, class} $C_p(U_2)$: Natalie $C_h(U_2)$: Natalie


- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

- Natalie was an associateprofessor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

- Natalie was an associate professor at UIC.
- She taught a class there called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- She was planning to teach the class once per year.

- Natalie was an associate professor at UIC.
- UIC had a class that she taught called Natural Language Processing.
- She enjoyed teaching the class, because she liked NLP a lot.
- The plan was that the class would be taught by Natalie once per year.

Entity Grid Model

- Alternative way to capture entity-based coherence
- Learns patterns of entity mentioning that can be used to train a supervised learning model to predict coherence
- Based on an entity grid
 - Two-dimensional array representing the distribution of entity mentions across sentences
 - Rows = sentences
 - Columns = discourse entities
 - Values in cells = Whether the entity appears in the sentence, and its grammatical role (subject, object, neither, or absent)

	Natalie	UIC	class	NLP
S1				
S2				
S 3				
S4				

- [Natalie]_s was an associate professor at [UIC]_x.
- [Natalie]_s taught a [class]_o at [UIC]_x called CS 421.
- [Natalie]_s enjoyed teaching the [class]_x and liked [NLP]_o a lot.
- [Natalie]_s was planning to teach the [class]_x once per year.

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2				
S 3				
S4				

- [Natalie]_s was an associate professor at [UIC]_x.
- [Natalie]_s taught a [class]_o at [UIC]_x called CS 421.
- [Natalie]_s enjoyed teaching the [class]_x and liked [NLP]_o a lot.
- [Natalie]_s was planning to teach the [class]_x once per year.

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	-
S 3				
S4				

- [Natalie]_s was an associate professor at [UIC]_x.
- [Natalie]_s taught a [class]_o at [UIC]_x called CS 421.
- [Natalie]_s enjoyed teaching the [class]_x and liked [NLP]_o a lot.
- [Natalie]_s was planning to teach the [class]_x once per year.

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	_
S 3	S	-	X	0
S4				

- [Natalie]_s was an associate professor at [UIC]_x.
- [Natalie]_s taught a [class]_o at [UIC]_x called CS 421.
- [Natalie]_s enjoyed teaching the [class]_x and liked [NLP]_o a lot.
- [Natalie]_s was planning to teach the [class]_x once per year.

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	_
S 3	S	-	X	0
S4	S	-	X	-

- [Natalie]_s was an associate professor at [UIC]_x.
- [Natalie]_s taught a [class]_o at [UIC]_x called CS 421.
- [Natalie]_s enjoyed teaching the [class]_x and liked [NLP]_o a lot.
- [Natalie]_s was planning to teach the [class]_x once per year.

Entity Grid Model

- Dense columns indicate entities mentioned often
- Sparse columns indicate entities mentioned rarely
- Coherence is thus measured by patterns of local entity transition
- Each transition ends up with a probability

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	_
S 3	S	-	X	0
S4	S	-	X	-

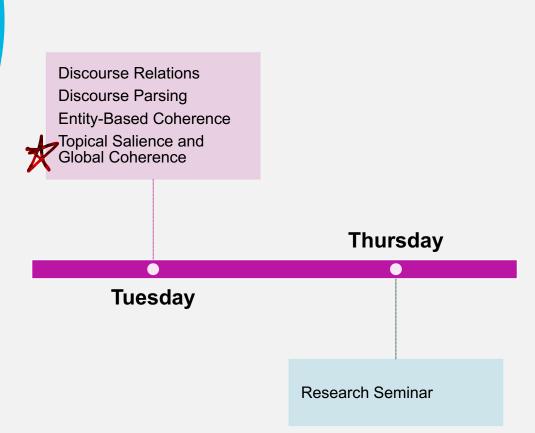
{x, x, -, -}

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	-
S 3	S	-	X	0
S4	S	-	X	-

$$p(\{x, x, -, -\}) = \frac{1}{4}$$

	Natalie	UIC	class	NLP
S1	S	X	-	-
S2	S	X	0	-
S 3	S	-	X	0
S4	S	-	Х	

$$p(\{-,o\}) = \frac{2}{12} = \frac{1}{6}$$


Entity Grid Model

- These transitions and their probabilities can be used as features for a machine learning model that is trained to predict coherence scores
- These models can be trained in a selfsupervised manner:
 - Learn to distinguish the natural order of sentences in a discourse (expected to be coherent) from a modified order (e.g., randomized order)

How do we evaluate entity-based coherence models?

- Best option: Compare human coherence ratings with predicted coherence ratings from the model
- O However, collecting human labels is expensive!
- O Alternate option:
 - O Similar strategy to self-supervised training process
 - O Evaluate the frequency with which the model predicts the naturally-occurring document to be more coherent than other randomized or otherwise perturbed version(s)

This Week's Topics

We've talked about identifying coherence relations and entity salience ...what about topical salience?

- Discourses are more coherent when they discuss a consistent set of topics
- This can be modeled using measures of lexical cohesion
 - Lexical cohesion: The sharing of identical or semantically-related words across nearby sentences

Latent Semantic Analysis (LSA)

- Early model of lexical cohesion
 - Still used by many humanities and social science researchers
- First approach using word embeddings for measuring cohesion
- Models the coherence between two sentences i and j as the cosine between their embedding vectors (traditionally, dimensionality-reduced TF*IDF vectors)
 - $sim(i,j) = cos(i,j) = cos(\sum_{w \in i} \mathbf{w}, \sum_{w \in j} \mathbf{w})$
- The overall coherence of a text is thus the average similarity over all pairs of adjacent sentences s_i and s_{i+1}
 - coherence $(t) = \frac{1}{n-1} \sum_{i=1}^{n-1} \text{sim}(s_i, s_{i+1})$

Other models make use of this intuition as well.

Local coherence discriminator (LCD)

- Computes the coherence of a text as the average of coherence scores between adjacent sentences
- Learns to discriminate between naturally-occurring adjacent sentences and those in a messed-up order using a selfsupervised neural model

77

Coherence relations, entity salience, and topical salience all focus on local coherence.

- However, discourses must be globally coherent as well!
 - Stories have an overall narrative structure
 - Persuasive essays follow specific argument structure
 - Scientific papers are characterized by a structure common across research publications

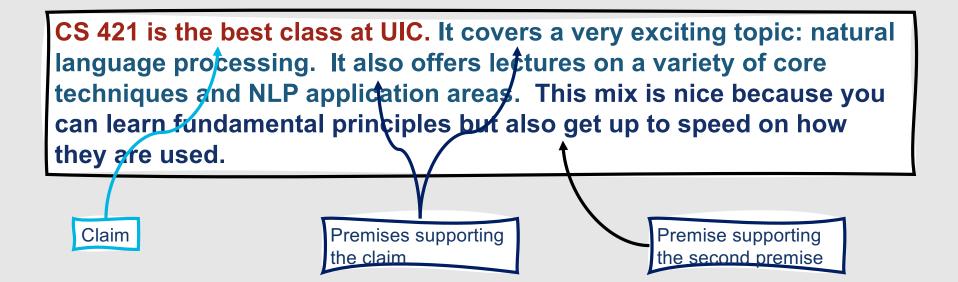
Argumentation Structure

Argumentation mining: The computational analysis of rhetorical strategy

Persuasive arguments generally contain well-defined argumentative components:

Claim: The central, controversial component of the argument

Premise: A persuasive support or attack of the claim or another premise


CS 421 is the best class at UIC. It covers a very exciting topic: natural language processing. It also offers lectures on a variety of core techniques and NLP application areas. This mix is nice because you can learn fundamental principles but also get up to speed on how they are used.

CS 421 is the best class at UIC. It covers a very exciting topic: natural language processing. It also offers lectures on a variety of core techniques and NLP application areas. This mix is nice because you can learn fundamental principles but also get up to speed on how they are used.

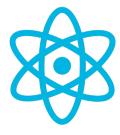
Claim

CS 421 is the best class at UIC. It covers a very exciting topic: natural language processing. It also offers lectures on a variety of core techniques and NLP application areas. This mix is nice because you can learn fundamental principles but also get up to speed on how they are used.

Premises supporting the claim

How can we detect argumentation structure?

Classifiers to identify claims, premises, and non-argumentation


Methods to detect specific argumentation schemes

- For example:
 - Argument from example
 - Argument from cause to effect
 - Argument from consequences

Related research: Studying how components of argument structure are associated with persuasive success

We can apply similar methods to scientific discourse!

- O In scientific papers, authors need to:
 - O Indicate a scientific goal
 - O Develop a method for reaching that goal
 - O Provide evidence for the solution
 - O Compare to prior work
- O Parallel to argumentation structure: Each paper tries to make a **knowledge claim**!
- O Modeling scientific discourse is an active research problem, as is modeling other global discourse structures (e.g., stories)

Summary: Discourse Coherence

- O Discourse coherence is the relationship (or lack thereof) between sentences in a discourse
- O It is influenced by a variety of factors:
 - O Coherence relations
 - O Entity salience
 - O Topical salience
 - O Global structure
- O Common models of discourse relation include Rhetorical Structure Theory and the Penn Discourse Treebank
- O Discourse parsing can be performed using techniques that are also common for other structured language parsing tasks
- O Entity salience can be modeled using Centering Theory or the Entity Grid Model
- O Lexical cohesion may be measured using latent semantic analysis or other word embedding-based methods
- O Argumentation structure captures global coherence, and may be applied to a variety of domains including persuasive essays and scientific discourse